
Week 5 - Monday



 What did we talk about last time?
 FIFOs
 Memory-mapped files









 Memory map a bitmap file read in from the user
 Then, write out the contents of the header, which should match the following struct:

struct BitmapHeader {
unsigned char type[2]; // always contains 'B' and 'M'
unsigned int size; // total size of file
unsigned int reserved; // always 0
unsigned int offset; // start of data from front of file
unsigned int header; // size of header, always 40
unsigned int width; // width of image in pixels
unsigned int height; // height of image in pixels
unsigned short planes; // planes in image, always 1
unsigned short bits; // color bit depths, always 24
unsigned int compression; // always 0
unsigned int dataSize; // size of color data in bytes
unsigned int horizontalResolution; // unreliable, use 72 when writing
unsigned int verticalResolution; // unreliable, use 72 when writing
unsigned int colors; // colors in palette, use 0 when writing
unsigned int importantColors; // important colors, use 0 when writing

};



 When we do this, we'll get unexpected values for size, width, and 
height

 The problem is one that's important when dealing with memory directly
 Struct members are typically packed to fall on certain boundaries
 In this case, the unsigned int values will fall on 4-byte boundaries
 That means that the struct we defined expects two unused bytes after type but 

before size
 To fix this problem, we surround the struct declaration with the following 

statements:
 #pragma pack(push, 2) // Set packing size to 2 bytes
 #pragma pack(pop) // Pop 2 off, restoring old size



 Assignments and projects for this class frequently use command-
line options

 Dealing with them can be annoying, so POSIX provides 
getopt() to help:

 argc and argv are the usual argument values passed into main()
 optstring is a string containing:
▪ Characters for any flag you want to give (such as g for a -g flag)
▪ With a colon afterwards when there are arguments (such as o: if there's an argument 

for the -o flag)

int getopt(int argc, char * const argv[], const char *optstring);



 Typically, getopt() is called repeatedly
 Whenever a legal option is found, the char value associated with that 

option is returned
▪ If the option has an argument, it's stored in the global variable optarg

 For unrecognized options, '?' is returned
 When all options have been processed
▪ getopt() returns -1
▪ The global variable optind contains the index of the first element in argv that isn't 

an option or option argument
 getopt()moves around the contents of argv so that all the 

options appear first



 Consider a program that runs the following code in its main()

 It's looking for:
 A -c option with no argument
 A -o option with an argument

int value = 0;
while ((value = getopt(argc, argv, "co:")) != -1)
{
switch (value)
{

case 'c': printf ("Compile but do not link\n"); break;
case 'o': printf ("Output: %s\n", optarg); break;

}
}
printf ("Current argument: %s\n", argv[optind]);



 Now this executable (program) is run:

 The output will be:

 Likewise, argv will have been rearranged so that all options are first:

./program goats.c -o result –c

Output: result
Compile but do not link
Current argument: goats.c

argv ./program -o result -c goats.c NULL

0 1 2 3 4 5



 Write a program that uses getopt() to respond to the 
following command-line options:
 -a Print "aardvark"
 -b Print "bat"
 -c Print "cat"
 -m name Print "a mammal of type name"
 Any other flag Print "unknown animal"

 After all the flags have been processed, print how many non-
flag arguments are left





 POSIX is a series of standards for operating systems tied 
closely to UNIX standards
 macOS is POSIX compliant in many ways but not for the IPC topics 

we're doing now
 Linux is mostly POSIX compliant
 Windows is not POSIX compliant, but there are environments like 

Cygwin that create mostly POSIX compliant environments
 For this kind of IPC, you have to use System V standards on 

macOS



 POSIX IPC function refer to IPC object named with a string that follows a 
particular format:
 It must start with a slash
 It must have one or more non-slash characters
 Example: /comp3400_mqueue

 Object names must be unique
 These objects often appear as files in the file system, but you shouldn't 

interact with them using normal file commands
 POSIX IPC connections also have two other (familiar) values:
 oflag: Access needed, a bitwise OR of flags like O_RDONLY, O_WRONLY, 
O_RDWR, O_CREAT, and O_EXCL

 mode: Permissions, a bitwise OR of flags like S_IWUSR and S_IRGRP





 Message queues are a form of message-passing IPC
 But don't we already have pipes and FIFOs?
 Differences from pipes:
 Messages are sent as units: one whole message is retrieved at a time
 Message queues use identifiers, not file descriptors, requiring special functions 

instead of read() and write()
 Messages have priorities, not just first-in-first-out
 Messages exist in the kernel, so killing off the sending process won't destroy 

them
 The big difference is structure:
 Pipes and FIFOs send bytes, and the reader can read any number of available 

bytes at a time
 Message queues send messages as units



 POSIX message queues have additional features that other 
implementations, like System V, might not have

 POSIX message queues:
 Are only removed once they're closed by all processes using them
 Include an asynchronous notification feature that allows processes to 

alerted when a message is available
 Have priority levels for messages
 Allow application developers to specify attributes (such as message 

size or capacity of the queue) via optional parameters passed when 
opening the queue



 mqd_t mq_open (const char *name, int oflag, ...
/* mode_t mode, struct mq_attr *attr */);

 Open (and possibly create) a POSIX message queue.
 int mq_getattr(mqd_t mqdes, struct mq_attr *attr);
 Get the attributes associated with a given message queue

 int mq_close (mqd_t mqdes);
 Close a message queue

 int mq_unlink (const char *name);
 Remove a message queue's name (and the message queue itself, when all processes close it)

 int mq_send (mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned int msg_prio);

 Send a message with a given length and priority
 ssize_t mq_receive (mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio);
 Receive a message into a buffer and get its priority





 Finish message queues
 Shared memory
 Semaphores



 Finish Project 1
 Due tonight by midnight!

 Read sections 3.7 and 3.8
 Exam 1 next Monday!


	COMP 3400
	Last time
	Questions?
	Assignment 3
	Project 1
	Programming practice
	Problem with the example
	The getopt() function
	Use of getopt()
	getopt() example
	getopt() example continued
	Programming practice
	POSIX IPC
	POSIX
	POSIX IPC
	Message Queues
	Message queues
	POSIX message queues
	POSIX message queue functions
	Upcoming
	Next time…
	Reminders

