
Week 5 - Monday



 What did we talk about last time?
 FIFOs
 Memory-mapped files









 Memory map a bitmap file read in from the user
 Then, write out the contents of the header, which should match the following struct:

struct BitmapHeader {
unsigned char type[2]; // always contains 'B' and 'M'
unsigned int size; // total size of file
unsigned int reserved; // always 0
unsigned int offset; // start of data from front of file
unsigned int header; // size of header, always 40
unsigned int width; // width of image in pixels
unsigned int height; // height of image in pixels
unsigned short planes; // planes in image, always 1
unsigned short bits; // color bit depths, always 24
unsigned int compression; // always 0
unsigned int dataSize; // size of color data in bytes
unsigned int horizontalResolution; // unreliable, use 72 when writing
unsigned int verticalResolution; // unreliable, use 72 when writing
unsigned int colors; // colors in palette, use 0 when writing
unsigned int importantColors; // important colors, use 0 when writing

};



 When we do this, we'll get unexpected values for size, width, and 
height

 The problem is one that's important when dealing with memory directly
 Struct members are typically packed to fall on certain boundaries
 In this case, the unsigned int values will fall on 4-byte boundaries
 That means that the struct we defined expects two unused bytes after type but 

before size
 To fix this problem, we surround the struct declaration with the following 

statements:
 #pragma pack(push, 2) // Set packing size to 2 bytes
 #pragma pack(pop) // Pop 2 off, restoring old size



 Assignments and projects for this class frequently use command-
line options

 Dealing with them can be annoying, so POSIX provides 
getopt() to help:

 argc and argv are the usual argument values passed into main()
 optstring is a string containing:
▪ Characters for any flag you want to give (such as g for a -g flag)
▪ With a colon afterwards when there are arguments (such as o: if there's an argument 

for the -o flag)

int getopt(int argc, char * const argv[], const char *optstring);



 Typically, getopt() is called repeatedly
 Whenever a legal option is found, the char value associated with that 

option is returned
▪ If the option has an argument, it's stored in the global variable optarg

 For unrecognized options, '?' is returned
 When all options have been processed
▪ getopt() returns -1
▪ The global variable optind contains the index of the first element in argv that isn't 

an option or option argument
 getopt()moves around the contents of argv so that all the 

options appear first



 Consider a program that runs the following code in its main()

 It's looking for:
 A -c option with no argument
 A -o option with an argument

int value = 0;
while ((value = getopt(argc, argv, "co:")) != -1)
{
switch (value)
{

case 'c': printf ("Compile but do not link\n"); break;
case 'o': printf ("Output: %s\n", optarg); break;

}
}
printf ("Current argument: %s\n", argv[optind]);



 Now this executable (program) is run:

 The output will be:

 Likewise, argv will have been rearranged so that all options are first:

./program goats.c -o result –c

Output: result
Compile but do not link
Current argument: goats.c

argv ./program -o result -c goats.c NULL

0 1 2 3 4 5



 Write a program that uses getopt() to respond to the 
following command-line options:
 -a Print "aardvark"
 -b Print "bat"
 -c Print "cat"
 -m name Print "a mammal of type name"
 Any other flag Print "unknown animal"

 After all the flags have been processed, print how many non-
flag arguments are left





 POSIX is a series of standards for operating systems tied 
closely to UNIX standards
 macOS is POSIX compliant in many ways but not for the IPC topics 

we're doing now
 Linux is mostly POSIX compliant
 Windows is not POSIX compliant, but there are environments like 

Cygwin that create mostly POSIX compliant environments
 For this kind of IPC, you have to use System V standards on 

macOS



 POSIX IPC function refer to IPC object named with a string that follows a 
particular format:
 It must start with a slash
 It must have one or more non-slash characters
 Example: /comp3400_mqueue

 Object names must be unique
 These objects often appear as files in the file system, but you shouldn't 

interact with them using normal file commands
 POSIX IPC connections also have two other (familiar) values:
 oflag: Access needed, a bitwise OR of flags like O_RDONLY, O_WRONLY, 
O_RDWR, O_CREAT, and O_EXCL

 mode: Permissions, a bitwise OR of flags like S_IWUSR and S_IRGRP





 Message queues are a form of message-passing IPC
 But don't we already have pipes and FIFOs?
 Differences from pipes:
 Messages are sent as units: one whole message is retrieved at a time
 Message queues use identifiers, not file descriptors, requiring special functions 

instead of read() and write()
 Messages have priorities, not just first-in-first-out
 Messages exist in the kernel, so killing off the sending process won't destroy 

them
 The big difference is structure:
 Pipes and FIFOs send bytes, and the reader can read any number of available 

bytes at a time
 Message queues send messages as units



 POSIX message queues have additional features that other 
implementations, like System V, might not have

 POSIX message queues:
 Are only removed once they're closed by all processes using them
 Include an asynchronous notification feature that allows processes to 

alerted when a message is available
 Have priority levels for messages
 Allow application developers to specify attributes (such as message 

size or capacity of the queue) via optional parameters passed when 
opening the queue



 mqd_t mq_open (const char *name, int oflag, ...
/* mode_t mode, struct mq_attr *attr */);

 Open (and possibly create) a POSIX message queue.
 int mq_getattr(mqd_t mqdes, struct mq_attr *attr);
 Get the attributes associated with a given message queue

 int mq_close (mqd_t mqdes);
 Close a message queue

 int mq_unlink (const char *name);
 Remove a message queue's name (and the message queue itself, when all processes close it)

 int mq_send (mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned int msg_prio);

 Send a message with a given length and priority
 ssize_t mq_receive (mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio);
 Receive a message into a buffer and get its priority





 Finish message queues
 Shared memory
 Semaphores



 Finish Project 1
 Due tonight by midnight!

 Read sections 3.7 and 3.8
 Exam 1 next Monday!
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