
Week 5 - Monday



 What did we talk about last time?
 FIFOs
 Memory-mapped files









 Memory map a bitmap file read in from the user
 Then, write out the contents of the header, which should match the following struct:

struct BitmapHeader {
unsigned char type[2]; // always contains 'B' and 'M'
unsigned int size; // total size of file
unsigned int reserved; // always 0
unsigned int offset; // start of data from front of file
unsigned int header; // size of header, always 40
unsigned int width; // width of image in pixels
unsigned int height; // height of image in pixels
unsigned short planes; // planes in image, always 1
unsigned short bits; // color bit depths, always 24
unsigned int compression; // always 0
unsigned int dataSize; // size of color data in bytes
unsigned int horizontalResolution; // unreliable, use 72 when writing
unsigned int verticalResolution; // unreliable, use 72 when writing
unsigned int colors; // colors in palette, use 0 when writing
unsigned int importantColors; // important colors, use 0 when writing

};



 When we do this, we'll get unexpected values for size, width, and 
height

 The problem is one that's important when dealing with memory directly
 Struct members are typically packed to fall on certain boundaries
 In this case, the unsigned int values will fall on 4-byte boundaries
 That means that the struct we defined expects two unused bytes after type but 

before size
 To fix this problem, we surround the struct declaration with the following 

statements:
 #pragma pack(push, 2) // Set packing size to 2 bytes
 #pragma pack(pop) // Pop 2 off, restoring old size



 Assignments and projects for this class frequently use command-
line options

 Dealing with them can be annoying, so POSIX provides 
getopt() to help:

 argc and argv are the usual argument values passed into main()
 optstring is a string containing:
▪ Characters for any flag you want to give (such as g for a -g flag)
▪ With a colon afterwards when there are arguments (such as o: if there's an argument 

for the -o flag)

int getopt(int argc, char * const argv[], const char *optstring);



 Typically, getopt() is called repeatedly
 Whenever a legal option is found, the char value associated with that 

option is returned
▪ If the option has an argument, it's stored in the global variable optarg

 For unrecognized options, '?' is returned
 When all options have been processed
▪ getopt() returns -1
▪ The global variable optind contains the index of the first element in argv that isn't 

an option or option argument
 getopt()moves around the contents of argv so that all the 

options appear first



 Consider a program that runs the following code in its main()

 It's looking for:
 A -c option with no argument
 A -o option with an argument

int value = 0;
while ((value = getopt(argc, argv, "co:")) != -1)
{
switch (value)
{

case 'c': printf ("Compile but do not link\n"); break;
case 'o': printf ("Output: %s\n", optarg); break;

}
}
printf ("Current argument: %s\n", argv[optind]);



 Now this executable (program) is run:

 The output will be:

 Likewise, argv will have been rearranged so that all options are first:

./program goats.c -o result –c

Output: result
Compile but do not link
Current argument: goats.c

argv ./program -o result -c goats.c NULL

0 1 2 3 4 5



 Write a program that uses getopt() to respond to the 
following command-line options:
 -a Print "aardvark"
 -b Print "bat"
 -c Print "cat"
 -m name Print "a mammal of type name"
 Any other flag Print "unknown animal"

 After all the flags have been processed, print how many non-
flag arguments are left





 POSIX is a series of standards for operating systems tied 
closely to UNIX standards
 macOS is POSIX compliant in many ways but not for the IPC topics 

we're doing now
 Linux is mostly POSIX compliant
 Windows is not POSIX compliant, but there are environments like 

Cygwin that create mostly POSIX compliant environments
 For this kind of IPC, you have to use System V standards on 

macOS



 POSIX IPC function refer to IPC object named with a string that follows a 
particular format:
 It must start with a slash
 It must have one or more non-slash characters
 Example: /comp3400_mqueue

 Object names must be unique
 These objects often appear as files in the file system, but you shouldn't 

interact with them using normal file commands
 POSIX IPC connections also have two other (familiar) values:
 oflag: Access needed, a bitwise OR of flags like O_RDONLY, O_WRONLY, 
O_RDWR, O_CREAT, and O_EXCL

 mode: Permissions, a bitwise OR of flags like S_IWUSR and S_IRGRP





 Message queues are a form of message-passing IPC
 But don't we already have pipes and FIFOs?
 Differences from pipes:
 Messages are sent as units: one whole message is retrieved at a time
 Message queues use identifiers, not file descriptors, requiring special functions 

instead of read() and write()
 Messages have priorities, not just first-in-first-out
 Messages exist in the kernel, so killing off the sending process won't destroy 

them
 The big difference is structure:
 Pipes and FIFOs send bytes, and the reader can read any number of available 

bytes at a time
 Message queues send messages as units



 POSIX message queues have additional features that other 
implementations, like System V, might not have

 POSIX message queues:
 Are only removed once they're closed by all processes using them
 Include an asynchronous notification feature that allows processes to 

alerted when a message is available
 Have priority levels for messages
 Allow application developers to specify attributes (such as message 

size or capacity of the queue) via optional parameters passed when 
opening the queue



 mqd_t mq_open (const char *name, int oflag, ...
/* mode_t mode, struct mq_attr *attr */);

 Open (and possibly create) a POSIX message queue.
 int mq_getattr(mqd_t mqdes, struct mq_attr *attr);
 Get the attributes associated with a given message queue

 int mq_close (mqd_t mqdes);
 Close a message queue

 int mq_unlink (const char *name);
 Remove a message queue's name (and the message queue itself, when all processes close it)

 int mq_send (mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned int msg_prio);

 Send a message with a given length and priority
 ssize_t mq_receive (mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio);
 Receive a message into a buffer and get its priority





 Finish message queues
 Shared memory
 Semaphores



 Finish Project 1
 Due tonight by midnight!

 Read sections 3.7 and 3.8
 Exam 1 next Monday!


	COMP 3400
	Last time
	Questions?
	Assignment 3
	Project 1
	Programming practice
	Problem with the example
	The getopt() function
	Use of getopt()
	getopt() example
	getopt() example continued
	Programming practice
	POSIX IPC
	POSIX
	POSIX IPC
	Message Queues
	Message queues
	POSIX message queues
	POSIX message queue functions
	Upcoming
	Next time…
	Reminders

